Homogeneity in generalized function algebras
نویسندگان
چکیده
We investigate homogeneity in the special Colombeau algebra on Rd as well as on the pierced space Rd \ {0}. It is shown that strongly scaling invariant functions on Rd are simply the constants. On the pierced space, strongly homogeneous functions of degree α admit tempered representatives, whereas on the whole space, such functions are polynomials with generalized coefficients. We also introduce weak notions of homogeneity and show that these are consistent with the classical notion on the distributional level. Moreover, we investigate the relation between generalized solutions of the Euler differential equation and homogeneity.
منابع مشابه
Weak homogeneity in generalized function algebras
In this paper, weakly homogeneous generalized functions in the special Colombeau algebras are determined up to equality in the sense of generalized distributions. This yields characterizations that are formally similar to distribution theory. Further, we give several characterizations of equality in the sense of generalized distributions in these algebras.
متن کاملApproximate solutions of homomorphisms and derivations of the generalized Cauchy-Jensen functional equation in $C^*$-ternary algebras
In this paper, we prove Hyers-Ulam-Rassias stability of $C^*$-ternary algebra homomorphism for the following generalized Cauchy-Jensen equation $$eta mu fleft(frac{x+y}{eta}+zright) = f(mu x) + f(mu y) +eta f(mu z)$$ for all $mu in mathbb{S}:= { lambda in mathbb{C} : |lambda | =1}$ and for any fixed positive integer $eta geq 2$ on $C^*$-ternary algebras by using fixed poind alternat...
متن کاملGeneralized additive functional inequalities in Banach algebras
Using the Hyers-Ulam-Rassias stability method, weinvestigate isomorphisms in Banach algebras and derivations onBanach algebras associated with the following generalized additivefunctional inequalitybegin{eqnarray}|af(x)+bf(y)+cf(z)| le |f(alpha x+ beta y+gamma z)| .end{eqnarray}Moreover, we prove the Hyers-Ulam-Rassias stability of homomorphismsin Banach algebras and of derivations on Banach ...
متن کاملPOINT DERIVATIONS ON BANACH ALGEBRAS OF α-LIPSCHITZ VECTOR-VALUED OPERATORS
The Lipschitz function algebras were first defined in the 1960s by some mathematicians, including Schubert. Initially, the Lipschitz real-value and complex-value functions are defined and quantitative properties of these algebras are investigated. Over time these algebras have been studied and generalized by many mathematicians such as Cao, Zhang, Xu, Weaver, and others. Let be a non-emp...
متن کاملFixed point theorems for generalized quasi-contractions in cone $b$-metric spaces over Banach algebras without the assumption of normality with applications
In this paper, we introduce the concept of generalized quasi-contractions in the setting of cone $b$-metric spaces over Banach algebras. By omitting the assumption of normality we establish common fixed point theorems for the generalized quasi-contractions with the spectral radius $r(lambda)$ of the quasi-contractive constant vector $lambda$ satisfying $r(lambda)in [0,frac{1}{s})$ in the set...
متن کامل